On Uniform Asymptotic Expansion of Definite Integrals*

R. Wong
Department of Mathematics, University of Manitoba, Winnipeg, Canada

Communicated by Yudell L. Luke
Received July 5, 1970

1. Introduction

In this paper we are concerned with the asymptotic expansion of integrals of the form

$$
\begin{equation*}
I(\lambda)=\int_{0}^{b} t^{r-1} q(t) e^{-\lambda p(t)} d t \tag{1.1}
\end{equation*}
$$

where $r>0$ is a fixed number and λ is a large positive parameter. The range of integration is real and may be finite or infinite. We assume that (i) $q(t)$ is analytic in some neighborhood of the path of integration;
(ii) $p(t)$ is analytic in some neighborhood of $[-\alpha, b)$, where $\alpha \geqslant 0$;
(iii) $p^{\prime}(-\alpha)=0, p^{\prime \prime}(-\alpha)>0$, and $p^{\prime}(t)>0$ for $t>-\alpha$.

When α is a fixed number, it is well known (see, for example, [9]) that asymptotic expansions can be found by an extension of the method of Laplace. However, this method gives different kinds of expansions for different values of α, depending on whether $\alpha=0$ or $\alpha>0$. Our objective here is to obtain a form of expansion which will hold uniformly for α restricted to a fixed interval, say, $0 \leqslant \alpha \leqslant \alpha_{0}$. For earlier work on this problem see Bleistein [1].

2. Reduction to a Canonical Form

In the classical situation when α is a fixed number, the use of the substitution,

$$
\begin{equation*}
p(t)-p(0)=u^{k} \tag{2.1}
\end{equation*}
$$

[^0]is often envisaged, where $k=1$ or 2 depends on whether $\alpha>0$ or $\alpha=0$. The integral $I(\lambda)$ is then reduced to a canonical representation of the form
\[

$$
\begin{equation*}
e^{\lambda p(0)} I(\lambda)=\int_{0}^{B} u^{r-1} f(u) e^{-\lambda u^{k}} d u \tag{2.2}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
B=\{p(b)-p(0)\}^{1 / k}, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{r-1} f(u)=t^{r-1} q(t)(d t / d u) \tag{2.4}
\end{equation*}
$$

The determination of the asymptotic behavior of $I(\lambda)$ given by (1.1), therefore, becomes equivalent to the determination of the asymptotic behavior of

$$
\begin{equation*}
J(\lambda)=\int_{0}^{B} u^{r-1} f(u) e^{-\lambda u^{k}} d u \tag{2.5}
\end{equation*}
$$

If $\alpha>0$ then $p^{\prime}(0)>0$. In this case we let $k=1$ and

$$
\begin{equation*}
u=p(t)-p(0)=p^{\prime}(0) t+\frac{1}{2} p^{\prime \prime}(0) t^{2}+\cdots \tag{2.6}
\end{equation*}
$$

On the other hand, if $\alpha=0$ then $p^{\prime}(0)=0$. In that case we let $k=2$ and

$$
\begin{equation*}
u^{2}=p(t)-p(0)=\frac{1}{2} p^{\prime \prime}(0) t^{2}+(1 / 3!) p^{\prime \prime \prime}(0) t^{3}+\cdots \tag{2.7}
\end{equation*}
$$

In both cases the inversion theorem of Burmann-Lagrange is applicable and will yield an expansion of the form

$$
\begin{equation*}
t=c_{1} u+c_{2} u^{2}+c_{3} u^{3}+\cdots, \quad c_{1} \neq 0 \tag{2.8}
\end{equation*}
$$

Substitution of (2.8) into (2.4) then gives

$$
\begin{equation*}
f(u)=a_{0}+a_{1} u+a_{2} u^{2}+\cdots \tag{2.9}
\end{equation*}
$$

the coefficients a_{s} being expressible in terms of the Maclaurin coefficients of q and p.

If, in (2.5), we replace the upper limit by infinity, substitute (2.9), and integrate formally term by term, we obtain

$$
\begin{equation*}
I(\lambda) \sim e^{-\lambda p(0)} \sum_{m=0}^{\infty} \frac{a_{m} \Gamma(m+r)}{\lambda^{m+r}}, \quad \text { if } \quad k=1 \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
2 I(\lambda) \sim e^{-\lambda p(0)} \sum_{m=0}^{\infty} \frac{a_{m} \Gamma\{(m+r) / 2\}}{\lambda^{(m+r) / 2}}, \quad \text { if } \quad k=2 \tag{2.11}
\end{equation*}
$$

The justification of this formal process is provided by the well-known lemma of Watson, see Luke [4, Section 1.4]. Since there is a discontinuous change from an expansion in powers of λ^{-1} to an expansion in powers of $\lambda^{-1 / 2}$, any uniformly asymptotic expansion for $\alpha \geqslant 0$ must take account not only of these two types but also the transition between them.

Examining the conditions on $p(t)$ given in (iii), it is easy to see that the simplest example of such a function is provided by the polynomial $t^{2} / 2+\alpha t$. This suggests that instead of making the substitution

$$
\begin{equation*}
p(t)-p(0)=u \quad \text { or } \quad u^{2} \tag{2.12}
\end{equation*}
$$

we let

$$
\begin{equation*}
p(t)-p(0)=\left(u^{2} / 2\right)+a u \tag{2.13}
\end{equation*}
$$

where a is a parameter to be determined. In order for (2.13) to result in a single-valued analytic function $t=t(u)$, neither $d t / d u$ nor $d u / d t$ can vanish in the relevant regions. But

$$
\begin{equation*}
d t / d u=(u+a) / p^{\prime}(t) \tag{2.14}
\end{equation*}
$$

and $p^{\prime}(-\alpha)=0$. Therefore we must make $t=-\alpha$ correspond to $u=-a$; i.e., we must choose

$$
\begin{equation*}
a=[2\{p(0)-p(-\alpha)\}]^{1 / 2} \tag{2.15}
\end{equation*}
$$

With this choice of $a, t=t(u)$, the solution of (2.13), is anlytic in a neighborhood of $u=0$ and is monotonic on $[-\alpha, b)$.

We return to the integral (1.1) after making the substitution (2.13). The result is

$$
\begin{equation*}
I(\lambda)=e^{-\lambda p(0)} \int_{0}^{B} u^{r-1} f(u) e^{-\lambda\left[u^{2} / 2+a u\right]} d u \tag{2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
f(u)=(t / u)^{r-1} q(t)(d t / d u) \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\lim _{t \rightarrow b}\{2[p(t)-p(-\alpha)]\}^{1 / 2}-\{2[p(0)-p(-\alpha)]\}^{1 / 2} \tag{2.18}
\end{equation*}
$$

Since $t(u)$ is analytic near $u=0, t(0)=0$ and $t^{\prime}(0)>0$, the function $f(u)$ can again be expanded in the form (2.9)

$$
\begin{equation*}
f(u)=a_{0}+a_{1} u+a_{2} u^{2}+\cdots \tag{2.19}
\end{equation*}
$$

where the series is converging in a neighborhood of $u=0$.
The problem of finding the uniform asymptotic expansion of the integral
$I(\lambda)$, given by (1.1), is now reduced to that of finding the uniform asymptotic expansion of the integral

$$
\begin{equation*}
F(\lambda)=\int_{0}^{\infty} u^{r-1} f(u) e^{-\lambda\left[u^{2} / 2+a u\right]} d u \tag{2.20}
\end{equation*}
$$

Since $f(u)$ is not required to be continuous, the seemingly more general integral

$$
\begin{equation*}
\int_{0}^{B} u^{r-1} f(u) e^{-\lambda\left[u^{2} / 2+a u\right]} d u \tag{2.21}
\end{equation*}
$$

where B may or may not be finite, is not really a generalization of (2.20). This situation is covered by allowing $f(u)$ in (2.20) to satisfy $f(u)=0$ for $u \geqslant B$.

3. Uniform Asymptotic Expansions

It is well known that Watson's lemma depends for its success on the basic integral

$$
\begin{equation*}
\int_{0}^{\infty} t^{\nu-1} e^{-\lambda t} d t=\Gamma(\nu) / \lambda^{\nu}, \quad \nu>0 \tag{3.1}
\end{equation*}
$$

In our case, the corresponding integral is

$$
\begin{equation*}
\int_{0}^{\infty} t^{\nu-1} e^{-\lambda\left(t^{2} / 2+\alpha t\right)} d t, \quad \nu>0 \tag{3.2}
\end{equation*}
$$

which can be evaluated by means of the parabolic cylinder function [8] to be

$$
\begin{equation*}
\int_{0}^{\infty} u^{\nu-1} e^{-\lambda\left[u^{2} / 2+\alpha u\right]} d u=\frac{\Gamma(\nu)}{\lambda^{\nu / 2}} D_{-\nu}\left(\lambda^{1 / 2} \alpha\right) e^{\lambda \alpha^{2} / 4} \tag{3.3}
\end{equation*}
$$

The most important recursion formulae for the function $D_{p}(z)$ are

$$
\begin{equation*}
D_{v}^{\prime}(z)+(z / 2) D_{v}(z)-\nu D_{v-1}(z)=0 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{\nu+1}(z)-z D_{\nu}(z)+\nu D_{\nu-1}(z)=0 \tag{3.5}
\end{equation*}
$$

These can be readily derived from their integral representations (see [8, p. 350]). The following lemma is essential in the proof of our main result.

Lemma. For each $m \geqslant 1$ we have

$$
\begin{equation*}
D_{-r-m}(z)=D_{-r}(z) P_{m}(z)+D_{-r}^{\prime}(z) Q_{m-1}(z) \tag{3.6}
\end{equation*}
$$

640/7/1-6
where $P_{m}(z)$ and $Q_{m-1}(z)$ are polynomials of the form

$$
\begin{align*}
P_{m}(z) & =\sum_{k=0}^{[m / 2]} p_{m, k} z^{m-2 k} \tag{3.7}\\
Q_{m-1}(z) & =\sum_{k=0}^{[m-1 / 2]} q_{m-1, k} z^{m-(2 k+1)} . \tag{3.8}
\end{align*}
$$

The coefficients $p_{m, k}$ and $q_{m-1, k}$ can be successively determined from the recurrence relations

$$
\begin{align*}
& (r+m+1) P_{m+2}(z)=P_{m}(z)-z P_{m+1}(z) \tag{3.9}\\
& (r+m+1) Q_{m+1}(z)=Q_{m-1}(z)-z Q_{m}(z) \tag{3.10}
\end{align*}
$$

with

$$
\begin{array}{ll}
P_{1}(z)=-z / 2 r, & (r+1) P_{2}(z)=1+\left(z^{2} / 2 r\right) \\
Q_{0}(z)=-1 / r, & (r+1) Q_{1}(z)=z / r \tag{3.11}
\end{array}
$$

Proof. We proceed by induction on m. From (3.4)

$$
\begin{equation*}
(-r) D_{-r-1}(z)=D_{-r}^{\prime}(z)+(z / 2) D_{-r}(z) \tag{3.12}
\end{equation*}
$$

and hence (3.6) holds for $m=1$. So we assume that the result is true for all $m \leqslant s$. It then follows from (3.5) that

$$
\begin{equation*}
(r+s) D_{-r-(s+1)}(z)=D_{-r-(s-1)}(z)-z D_{-r-s}(z) \tag{3.13}
\end{equation*}
$$

Using our inductive hypothesis, we may express $D_{-r-(s-1)}(z)$ and $D_{-r-s}(z)$ in the form of (3.6). Thus,

$$
\begin{equation*}
D_{-r-(s+1)}(z)=D_{-r}(z) P_{s+1}(z)+D_{-r}^{\prime}(z) Q_{s}(z) \tag{3.14}
\end{equation*}
$$

where $P_{s+1}(z)$ and $Q_{s}(z)$ are given in (3.9) and (3.10), respectively. Since $P_{s-1}(z)$ and $P_{s}(z)$ are assumed to be of the form (3.7), it is easy to see from (3.9) that $P_{s+1}(z)$ must also be of this form. The same argument applies to $Q_{s}(z)$. Furthermore, since the polynomials P_{1}, P_{2}, Q_{0}, and Q_{1}, as given in (3.11), can be obtained directly from (3.12) and (3.13), the recursion formulae (3.9) and (3.10) can be used to successively determine the coefficients of $P_{m}(z)$ and $Q_{m-1}(z)$ for $m \geqslant 2$. This completes the proof of the lemma.

Remark. The above result is also valid when $m=0$ if we agree to set $Q_{-1}(z)=0$ and $P_{0}(z)=1$.

Main Theorem. Consider the integral

$$
\begin{equation*}
F(\lambda)=\int_{0}^{\infty} u^{r-1} f(u) e^{-\lambda\left[u^{2} / 2+\alpha u\right]} d u, \tag{3.16}
\end{equation*}
$$

where $r>0, \alpha \geqslant 0$ and $\lambda \rightarrow+\infty$. If $f(u)$ can be expanded in the form

$$
\begin{equation*}
f(u)=\sum_{m=0}^{\infty} a_{m} u^{m}, \quad|u| \leqslant R, \tag{3.17}
\end{equation*}
$$

and if there exists positive constants K_{1} and K_{2} such that

$$
\begin{equation*}
|f(u)| \leqslant K_{1} e^{K_{2} u^{2}}, \quad u \geqslant R \tag{3.18}
\end{equation*}
$$

then for any fixed $N \geqslant 0$ we have, uniformly in α,

$$
\begin{aligned}
e^{-\lambda \alpha^{2} / 4} F(\lambda)= & \frac{D_{-r}\left(\lambda^{1 / 2} \alpha\right)}{\lambda^{r / 2}}\left[\sum_{k=0}^{N} \frac{\zeta_{k}(\alpha)}{\lambda^{k}}+0\left(\frac{1}{\lambda^{N+1}}\right)\right] \\
& +\frac{D_{--}^{\prime}\left(\lambda^{1 / 2} \alpha\right)}{\lambda^{(r+1) / 2}}\left[\sum_{k=0}^{N} \frac{\eta_{k}(\alpha)}{\lambda^{k}}+0\left(\frac{1}{\lambda^{N+1}}\right)\right]
\end{aligned}
$$

where $\zeta_{k}(\alpha)$ and $\eta_{k}(a)$ are analytic functions of α given by

$$
\begin{align*}
& \zeta_{k}(\alpha)=\sum_{m \geqslant 2 k}^{2 N+2} a_{m} \Gamma(r+m) p_{m, k} \alpha^{m-2 k}, \tag{3.20}\\
& \eta_{k}(\alpha)=\sum_{m \geqslant 2 k+1}^{2 N+2} a_{m} \Gamma(r+m) q_{m-1, k} \alpha^{m-2 k-1} \tag{3.21}
\end{align*}
$$

the p's and q's being the coefficients of $P_{m}(z)$ and $Q_{m-1}(z)$ given by (3.7) and (3.8).
Proof. For any integer $N \geqslant 0$, we set

$$
\begin{equation*}
f(u)=\sum_{m=0}^{2 N+2} a_{m} u^{m}+R_{2 N+2} \tag{3.22}
\end{equation*}
$$

Then

$$
\begin{equation*}
F(\lambda)=\sum_{m=0}^{2 N+2} a_{m} \int_{0}^{\infty} u^{r+m-1} e^{-\lambda\left[u^{2} / 2+\alpha u\right]} d u+E_{2 N+2} \tag{3.23}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{2 N+2}=\int_{0}^{\infty} R_{2 N+2} u^{r-1} e^{-\lambda\left[u^{2} / 2+\alpha u\right]} d u . \tag{3.24}
\end{equation*}
$$

From (3.3) we have

$$
\begin{align*}
e^{-\lambda \alpha^{2} / 4} F(\lambda)= & \sum_{m=0}^{2 N+2} \frac{a_{m} \Gamma(m+r)}{\lambda^{(r+m) / 2}} D_{-r-m}\left(\lambda^{1 / 2} \alpha\right) \\
& +e^{-\lambda \alpha^{2} / 4} E_{2 N+2} . \tag{3.25}
\end{align*}
$$

By Lemma 1 the finite sum in (3.25) can be rewritten as

$$
\begin{aligned}
& \frac{D_{-r}\left(\lambda^{1 / 2} \alpha\right)}{\lambda^{r / 2}} \sum_{m=0}^{2 N+2} \sum_{k=0}^{[m / 2]} \frac{a_{m} \Gamma(r+m)}{\lambda^{k}} p_{m, k} \alpha^{m-2 k} \\
& \quad+\frac{D_{-r}^{\prime}\left(\lambda^{1 / 2} \alpha\right)}{\lambda^{(r+1) / 2}} \sum_{m=1}^{2 N+2} \sum_{k=0}^{[(m-1) / 2]} \frac{a_{m} \Gamma(r+m)}{\lambda^{k}} q_{m-1, k} \alpha^{m-2 k-1}
\end{aligned}
$$

An interchange of the summation signs then yields

$$
\begin{align*}
\sum_{m=0}^{2 N+2} & \frac{a_{m} \Gamma(m+r)}{\lambda^{(m+r) / 2}} D_{-r-m}\left(\lambda^{1 / 2} \alpha\right) \\
& =\frac{D_{-r}\left(\lambda^{1 / 2} \alpha\right)}{\lambda^{r / 2}} \sum_{k=0}^{N+1} \frac{\zeta_{k}(\alpha)}{\lambda^{k}}+\frac{D_{-r}^{\prime}\left(\lambda^{1 / 2} \alpha\right)}{\lambda^{(r+1) / 2}} \sum_{k=0}^{N} \frac{\eta_{k}(\alpha)}{\lambda^{k}}, \tag{3.27}
\end{align*}
$$

where the ζ_{k} 's and η_{k} 's are given by (3.20) and (3.21). Coupling this result together with (3.25), we have

$$
\begin{align*}
e^{-\lambda \alpha^{2} / 4} F(\lambda)= & \frac{D_{-r}\left(\lambda^{1 / 2} \alpha\right)}{\lambda^{r / 2}} \sum_{k=0}^{N+1} \frac{\zeta_{k}(\alpha)}{\lambda^{k}} \\
& +\frac{D_{-r}^{\prime}\left(\lambda^{1 / 2} \alpha\right)}{\lambda^{(r+\nu) / 2}} \sum_{k=0}^{N} \frac{\eta_{k}(\alpha)}{\lambda^{k}}+e^{-\lambda \alpha^{2} / 4} E_{2 N+2} . \tag{3.28}
\end{align*}
$$

To complete the proof, an estimate of $E_{2 N+2}$ must be made. From (3.17), we have

$$
\begin{equation*}
\left|R_{2 N+2}\right| \leqslant K_{3} u^{2 N+3} \tag{3.29}
\end{equation*}
$$

for $0 \leqslant u \leqslant R$. With (3.18)

$$
\begin{equation*}
\left|R_{2 N+2}\right| \leqslant K_{4} u^{2 N+3} e^{K_{2} u^{2}}, \tag{3.30}
\end{equation*}
$$

for all $u \geqslant 0$, whether $u \leqslant R$ or $u \geqslant R$. Since $\alpha \geqslant 0$, it follows from (3.24) that

$$
\begin{align*}
\left|E_{2 N+2}\right| & \leqslant K_{4} \int_{0}^{\infty} u^{r+2 N+2} e^{-\left(\lambda / 2-K_{2}\right) u^{2}} d u \\
& =0\left(\lambda^{-(r+2 N+3) / 2}\right) . \tag{3.31}
\end{align*}
$$

Furthermore, since both $D_{-r}(z)$ and $D_{-r}^{\prime}(z)$ have no nonnegative real zeros, as long as $\lambda^{1 / 2} \alpha$ is bounded, say, $\lambda^{1 / 2} \alpha \leqslant A$, there exist positive numbers M_{1} and M_{2}, independent of λ and α, such that

$$
\begin{equation*}
\left|e^{-\lambda \alpha^{2} / 4} E_{2 N+2}\right| \leqslant \lambda^{-(r+2 N+3) / 2}\left\{M_{1}\left|D_{-r}\left(\lambda^{1 / 2} \alpha\right)\right|+M_{2}\left|D_{-r}^{\prime}\left(\lambda^{1 / 2} \alpha\right)\right|\right\} \tag{3.32}
\end{equation*}
$$

for sufficiently large λ. For $\lambda^{1 / 2} \alpha \geqslant A$, we have again from (3.24)

$$
\begin{align*}
\left|E_{2 N+2}\right| & \leqslant K_{4} \int_{0}^{\infty} u^{r+2 N+2} e^{-\lambda \alpha u} d u \\
& =0\left((\lambda \alpha)^{-r-2 N-3}\right), \quad \text { as } \quad \lambda \rightarrow \infty \tag{3.33}
\end{align*}
$$

Hence (3.32) holds also when $\lambda^{1 / 2} \alpha \geqslant A$, since

$$
\begin{equation*}
D_{v}(z) \sim z^{\nu} e^{-z^{2} / 4}, \quad D_{v}^{\prime}(z) \sim\left(-\frac{1}{2}\right) z^{\nu+1} e^{-z^{2} / 4} \tag{3.34}
\end{equation*}
$$

as $z \rightarrow+\infty$ (see [8, p. 347]).
Using (3.28) and (3.32) it gives

$$
\begin{align*}
e^{-\lambda \alpha^{2} / 4} F(\lambda)= & \frac{D_{-r}\left(\lambda^{1 / 2} \alpha\right)}{\lambda^{r / 2}}\left[\sum_{k=0}^{N} \frac{\zeta_{k}(\alpha)}{\lambda^{k}}+0\left(\frac{1}{\lambda^{N+1}}\right)\right] \\
& +\frac{D_{-r}^{\prime}\left(\lambda^{1 / 2} \alpha\right)}{\lambda^{(r+1) / 2}}\left[\sum_{k=0}^{N} \frac{\eta_{k}(\alpha)}{\lambda^{k}}+0\left(\frac{1}{\lambda^{N+1}}\right)\right] \tag{3.35}
\end{align*}
$$

which is the required result.

4. An Example

For each real number x and each positive integer n, set

$$
\begin{equation*}
e^{n x}=\sum_{n=0}^{n} \frac{(n x)^{r}}{r!}+\frac{(n x)^{n}}{n!} S_{n}(x) \tag{4.1}
\end{equation*}
$$

In 1913, Ramanujan [5] asserted that, as $n \rightarrow \infty$,

$$
\begin{equation*}
S_{n}(1)=(n!/ 2)(e / n)^{2}-\frac{2}{3}+(4 / 135 n)+0\left(1 / n^{2}\right) \tag{4.2}
\end{equation*}
$$

Proofs of this result were given independently in 1928 by Szego [6] and Watson [7]. In 1932, Copson [3] investigated the behaviour of $S_{n}(-1)$, and showed that, as $n \rightarrow \infty$,

$$
\begin{equation*}
S_{n}(-1) \sim-\frac{1}{2}+(1 / 8 n)+\left(1 / 32 n^{2}\right)-\left(1 / 128 n^{3}\right)-\left(13 / 256 n^{4}\right)+\cdots \tag{4.3}
\end{equation*}
$$

WONG

In a recent paper, Buckholtz [2] proved that, for $k \geqslant 1$

$$
\begin{equation*}
S_{n}(x)=\sum_{r=0}^{k-1} U_{r}(x) \frac{1}{n^{r}}+0\left(\frac{1}{n^{k}}\right) \tag{4.4}
\end{equation*}
$$

uniformly for $x \in(-\infty, 1-\delta]$. The coefficients $U_{r}(x)$ are of the form

$$
\begin{equation*}
U_{0}(x)=x /(1-x), \quad U_{r}(x)=(-1)^{r}\left[Q_{r}(x) /(1-x)^{2 r+1}\right] \tag{4.5}
\end{equation*}
$$

where $Q_{r}(x)$ is a polynomial in x of degree r. Since $U_{r}(x)$ has a pole of order $(2 r+1)$, the expansion (4.4) is not valid for x near 1 . It is, therefore, natural to ask whether there exists an asymptotic expansion for $S_{n}(x)$, as $n \rightarrow \infty$, which is uniformly valid for x restricted to an interval, say, $\delta \leqslant x \leqslant 1$, where δ is some fixed positive number.

To answer this question affirmatively, we write

$$
\begin{equation*}
e^{n x}=\sum_{r=0}^{n} \frac{(n x)^{r}}{r!}+\frac{1}{n!} \int_{0}^{n x}(n x-t)^{n} e^{t} d t . \tag{4.6}
\end{equation*}
$$

Comparing (4.1) with (4.6), we have

$$
\begin{equation*}
(n x)^{n} S_{n}(x)=e^{n x} \int_{0}^{n x}(n x-t)^{n} e^{-(n x-t)} d t \tag{4.7}
\end{equation*}
$$

Now make the substitution $(n x-t)=n x(1-\tau)$ and write

$$
\begin{equation*}
S_{n}(x)=(n x) \int_{0}^{1} \exp \{-n[-x t-\log (1-t)]\} d t \tag{4.8}
\end{equation*}
$$

The last integral is clearly of the form (1.1), with $b=1, r=1, q(t)=1$, $p(t)=[-x t-\log (1-t)], \lambda=n$ and $\alpha=(1-x) / x$.

Following the procedures outlined in Section 2, we let

$$
\begin{equation*}
-x t-\log (1-t)=\left(u^{2} / 2\right)+a u \tag{4.9}
\end{equation*}
$$

with

$$
\begin{equation*}
a^{2}=2\{(x-1)-\log x\} . \tag{4.10}
\end{equation*}
$$

Using $\mathfrak{P}(\beta)$ as a generic symbol for a power series in β such that $\mathfrak{P}(0)=0$, we may express $a=a(x)$ in the form

$$
\begin{equation*}
a=(1-x)[1+\mathfrak{P}(1-x)] \tag{4.11}
\end{equation*}
$$

an analytic function of x near $x=1$.

Changing to the variable u, we obtain

$$
\begin{equation*}
S_{n}(x)=(n x) \int_{0}^{\infty} \frac{d t}{d u} e^{-n\left[u^{2} / 2+a u\right]} d u, \tag{4.12}
\end{equation*}
$$

where $d t / d u$ can be expanded as a convergent power series

$$
\begin{equation*}
\frac{d t}{d u}=\sum_{n=0}^{\infty} a_{n}(x) u^{n}, \tag{4.13}
\end{equation*}
$$

with the coefficients given by

$$
\begin{equation*}
a_{n}(x)=(1 / n!)\left\{d^{n+1} t / d u^{n+1}\right\}_{u-0} . \tag{4.14}
\end{equation*}
$$

From (4.9) we have

$$
\begin{equation*}
[-x+(1 /(1-t))](d t / d u)=u+a \tag{4.15}
\end{equation*}
$$

and hence

$$
\begin{array}{r}
\frac{1}{(1-t)^{2}}\left(\frac{d t}{d u}\right)^{2}+\left(-x+\frac{1}{1-t}\right) \frac{d^{2} t}{d u^{2}}=1, \\
\frac{2}{(1-t)^{2}}\left(\frac{d t}{d u}\right)^{3}+\frac{3}{(1-t)^{2}} \frac{d t}{d u} \cdot \frac{d^{2} t}{d u^{2}}+\left(-x+\frac{1}{1-t}\right) \frac{d^{3} t}{d u^{3}}=0 \tag{4.16}
\end{array}
$$

and so on. These equations give

$$
\begin{align*}
& a_{0}(x)=a /(1-x), \quad a_{1}(x)=[1 /(1-x)]-\left[a^{2} /(1-x)^{3}\right], \tag{4.17}\\
& a_{2}(x)=-\left[a^{3} /(1-x)^{4}\right]-\left[3 a / 2(1-x)^{3}\right]+\left[3 a^{3} / 2(1-x)^{5}\right],
\end{align*}
$$

and so on. Each coefficient is an analytic function of x near $x=1$. Since $|d t / d u|$ is bounded for large values of u, we have from the main theorem

$$
\begin{equation*}
e^{-n a^{2} / 4} S_{n}(x) \sim(n x)\left\{\frac{D_{-1}\left(n^{1 / 2} a\right)}{n^{1 / 2}} \sum_{k=0}^{\infty} \frac{\zeta_{k}(a)}{n^{k}}+\frac{D_{-1}^{\prime}\left(n^{1 / 2} a\right)}{n} \sum_{k=0}^{\infty} \frac{\eta_{k}(a)}{n^{k}}\right\}, \tag{4.18}
\end{equation*}
$$

as $n \rightarrow \infty$, where the coefficients $\zeta_{k}(a)$ and $\eta_{k}(a)$ are analytic functions of a near the origin. The dominant term of this expansion is

$$
\begin{equation*}
S_{n}(x) \sim[a /(1-x)] n x\left[D_{-1}\left(n^{1 / 2} a\right) / n^{1 / 2}\right] e^{n a^{2} / 4}, \quad \text { as } \quad n \rightarrow \infty \tag{4.19}
\end{equation*}
$$

with $a^{2}=2\{(x-1)-\log x\}$.
As a check on the validity of (4.19), we first let $x=1$. In this case we have

$$
\begin{equation*}
S_{n}(1) \sim(\pi n / 2)^{1 / 2}, \quad \text { as } \quad n \rightarrow \infty \tag{4.20}
\end{equation*}
$$

which is precisely the first approximation given by Watson. Next we let $x \leqslant 1-\delta<1$. Then we have

$$
\begin{equation*}
S_{n}(x) \sim x /(1-x), \quad \text { as } \quad n \rightarrow \infty \tag{4.21}
\end{equation*}
$$

which is the dominant term given by Buckholtz.

References

1. N. Bleistein, Uniform asymptotic expansions of integrals with stationary point near algebraic singularity, Comm. Pure Appl. Math. 19 (1966), 353-370.
2. J. D. Buckholtz, Concerning an approximation of copson, Proc. Amer. Math. Soc. 14 (1963), 564-568.
3. E. T. Copson, An approximation connected with e^{-x}, Proc. Edinburgh Math. Soc. 3 (1932-1933), 201-206.
4. Y. L. Luke, "The Special Functions and Their Approximations," Academic Press, New York, 1969.
5. S. Ramanujan, "Collected Papers," p. 26, Cambridge Univ. Press, London/New York, 1927.
6. G. Szego, Über einige von S. Rananujan Gestellte Aufgaben, J. London Math. Soc. 3 (1928), 225-232.
7. G. N. Watson, Approximations connected with e^{x}, Proc. London Math. Soc. (2) 29 (1928-1929), 293-308.
8. E. T. Whittaker and G. N. Watson, "A Course in Modern Analysis," 4th Ed., Cambridge University Press, London/New York, 1958.
9. M. Wyman, The method of Laplace, Trans. Roy. Soc. Canad. 2 (1964), 227-256.

[^0]: * This research was supported in part by the National Research Council of Canada under contract No. A7359.

