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I. INTRODUCTION

In this paper we are concerned with the asymptotic expansion of integrals
of the form

(1.1)

where r > 0 is a fixed number and ,\ is a large positive parameter. The range
of integration is real and may be finite or infinite. We assume that (i) q(t) is
analytic in some neighborhood of the path of integration;

(ii) p(t) is analytic in some neighborhood of [-G:, b), where G: ~ 0;

(iii) p'(-G:) = O,p"(-G:) > 0, andp'(t) > 0 for t > -G:.

When G: is a fixed number, it is well known (see, for example, [9]) that
asymptotic expansions can be found by an extension of the method of
Laplace. However, this method gives different kinds of expansions for
different values of G:, depending on whether G: = 0 or G: > O. Our objective
here is to obtain a form ofexpansion which will hold uniformly for G: restricted
to a fixed interval, say, 0 ~ G: ~ G:o. For earlier work on this problem see
Bleistein [1].

2. REDUCTION TO A CANONICAL FORM

In the classical situation when G: is a fixed number, the use of the substi
tution,

p(t) - p(O) = Uk, (2.1)
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is often envisaged, where k = 1 or 2 depends on whether (X > 0 or (X = O.
The integral I(A) is then reduced to a canonical representation of the form

B
eAP(OlI(;\.) = J ur-1f(u) e-AU' du, (2.2)

0

where

B = {pCb) - p(O)}l/k, (2.3)

and
ur-1f(u) = tr-1q(t)(dtldu). (2.4)

The determination of the asymptotic behavior of I(;\.) given by (1.1), therefore,
becomes equivalent to the determination of the asymptotic behavior of

I(A) = rur-1j(u) e-Au' duo
o

If (X > 0 then p'(O) > O. In this case we let k = 1 and

u = pet) - p(O) = p'(O) t + tp"(O) t2+ ....

(2.5)

(2.6)

On the other hand, if IX = 0 then p'(O) = O. In that case we let k = 2 and

u2 = pet) - p(O) = tp"(O) t2+ (I 13 !) p"'(O) t3 + .... (2.7)

In both cases the inversion theorem of Burmann-Lagrange is applicable
and will yield an expansion of the form

(2.8)

Substitution of (2.8) into (2.4) then gives

feu) = ao+ a1u + a2u2 + "', (2.9)

the coefficients as being expressible in terms of the Maclaurin coefficients
of q and p.

If, in (2.5), we replace the upper limit by infinity, substitute (2.9), and
integrate formally term by term, we obtain

and

2I(A) ,..... e-Ap(O) ~ amr{(m + r)/2}
L... Nm+rl/2 '

m=O

if k = 1,

if k = 2.

(2.10)

(2.11)
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The justification of this formal process is provided by the well-known lemma
of Watson, see Luke [4, Section 1.4]. Since there is a discontinuous change
from an expansion in powers of ,\-1 to an expansion in powers of ,\-1/2,

any uniformly asymptotic expansion for ex :): 0 must take account not
only of these two types but also the transition between them.

Examining the conditions on p(t) given in (iii), it is easy to see that the
simplest example of such a function is provided by the polynomial t 2/2 + ext.
This suggests that instead of making the substitution

we let

p(t) - p(O) = u or (2.12)

p(t) - p(O) = (u 2/2) + au, (2.13)

where a is a parameter to be determined. In order for (2.13) to result in a
single-valued analytic function t = t(u), neither dt/du nor du/dt can vanish
in the relevant regions. But

dt/du = (u + a)/p'(t), (2.14)

and p'( -ex) = O. Therefore we must make t = -ex correspond to u = -a;
i.e., we must choose

a = [2{ p(O) - p( -ex)}]1/2. (2.15)

With this choice of a, t = t(u), the solution of (2.13), is anlytic in a neighbor
hood of u = 0 and is monotonic on [- ex, b).

We return to the integral (1.1) after making the substitution (2.13). The
result is

where

and

B
1('\) = e-AP(O) J0 ur-If(u) e-A[U

2
/2+auj du,

f(u) = (t/uy-I q(t)(dt/du)

B = lim {2[p(t) - p(_ex)]}1/2 - {2[p(0) - p(_ex)]}1/2.
t-;b

(2.16)

(2.17)

(2.18)

Since t(u) is analytic near u = 0, t(O) = 0 and t'(O) > 0, the function f(u)
can again be expanded in the form (2.9)

(2.19)

where the series is converging in a neighborhood of u = O.
The problem of finding the uniform asymptotic expansion of the integral
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I()..), given by (1.1), is now reduced to that of finding the uniform asymptotic
expansion of the integral

F()..) = rur-1f(u) e-A[U
2

/2+au] duo (2.20)
o

Since feu) is not required to be continuous, the seemingly more general
integral

BJ ur-If(u) e-A[u
2

/2+au] du,
o

(2.21)

where B mayor may not be finite, is not really a generalization of (2.20).
This situation is covered by allowing feu) in (2.20) to satisfy feu) = °for
u ~B.

3. UNIFORM ASYMPTOTIC EXPANSIONS

It is well known that Watson's lemma depends for its success on the basic
integral r tv-Ie-At dt = r(v)/)..v,

o

In our case, the corresponding integral is

JOO tv-Ie-ACt2/2+"t) dt,
o

v>O.

v> 0,

(3.1)

(3.2)

which can be evaluated by means of the parabolic cylinder function [8] to be

The most important recursion formulae for the function Dv(z) are

D:(z) + (z/2) D.(z) - vDv_l(z) = 0,
and

Dv+l(z) - zDv(z) + vDv_l(z) = O.

(3.3)

(3.4)

(3.5)

These can be readily derived from their integral representations (see [8,
p. 350]). The following lemma is essential in the proof of our main result.

LEMMA. For each m ~ 1 we have

(3.6)
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where Pm(z) and Qm-I(Z) are polynomials of the form

[m/2]
P (z) = "p zm-2km l..J m,k ,

k=O

[m-IJ2]
Q (z) = "q zm-(2k+l)

m-l L. m-l.k .
k~O

(3.7)

(3.8)

The coefficients Pm.k and qm-l.k can be successively determined from the
recurrence relations

(r + m + 1) Pm+2(z) = Pm(z) - ZPm+l(z), (3.9)

(r + m + 1) Qm+l(z) = Qm-I(Z) - zQm(z), (3.10)

with

P1(Z) = -z/2r,

Qo(z) = -l/r,

(r + 1) P2(z) = 1 + (z2/2r),

(r + 1) QI(Z) = z/r.
(3.11)

Proof We proceed by induction on m. From (3.4)

(-r) D_r_l(z) = D~r<z) + (z/2) D_r(z), (3.12)

and hence (3.6) holds for m = 1. So we assume that the result is true for all
m ~ s. It then follows from (3.5) that

Using our inductive hypothesis, we may express D-r-(S-I)(Z) and D_r-sCz)
in the form of (3.6). Thus,

D-r-(.+ll(z) = D-rCz) PS+l(z) + D~r(z) Q.(z), (3.14)

where P'+l(z) and Q.(z) are given in (3.9) and (3.10), respectively. Since
p.-1(z) and P.(z) are assumed to be of the form (3.7), it is easy to see from
(3.9) that P'+l(z) must also be of this form. The same argument applies to
Q.(z). Furthermore, since the polynomials PI , P2 , Qo, and QI , as given in
(3.11), can be obtained directly from (3.12) and (3.13), the recursion formulae
(3.9) and (3.10) can be used to successively determine the coefficients of
Pm(z) and Qm-I(Z) for m ;:3 2. This completes the proof of the lemma.

Remark. The above result is also valid when m = 0 if we agree to set
Q-I(Z) = 0 and Po(z) = 1.
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MAIN THEOREM. Consider the integral

FCA) = ( ur -1j(u) e-'\[U2 j2+o<uj du,

81

(3.16)

where r > 0, ex ~ 0 and A -+ +00. If f(u) can be expanded in the form

00

f(u) = L amum,
m~O

lui ~R, (3.17)

and ifthere exists positive constants K1 and K2such that

u ~R; (3.18)

then for any fixed N ~ 0 we have, uniformly in ex,

where 'k(ex) and TJk(a) are analytic functions of ex given by

2N+2
'k(ex) = L amr(r + m) Pm.kexm- 2k,

m;;;'2k

2N+2
TJk(ex) = L amr(r + m) qm_uexm-2k-l,

m;;;'2k+l

(3.20)

(3.21)

thep's andq's being the coefficients ofPm(z) and Qm-l(Z) given by (3.7) and (3.8).

Proof For any integer N ~ 0, we set

Then

where

2N+2
f(u) = L amum+ R2N+2.

m~O

2N+2 00

F(A) = L am f ur+m- 1e-'\[U2/2+o<uj du + E2N+2,
m=O 0

E - foo R ur- 1e-'\[U2/2+o<uj J u2N+2 - 2N+2 Ui •
o

(3.22)

(3.23)

(3.24)
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From (3.3) we have

e-Arx2/4F(t\) = 2~2 GmF(m + r) D (t\1/2)
L., t\(r+ml/2 -r-m ex

m=o

(3.25)

By Lemma 1 the finite sum in (3.25) can be rewritten as

D'- (t\1/2ex) 2N+2 [(m-l)/2] G F(r + m)
+ r "" m q m-2k-l

NrH) /2 1.. 1.. t\k m-l,kex
m~l k~O

An interchange of the summation signs then yields

2~2 GmF(m + r) D (t\1/2ex)
1.. Nm+r) /2 -r-m
m~O

(3.27)

where the ~k'S and 'rJk'S are given by (3.20) and (3.21). Coupling this result
together with (3.25), we have

e-Arx'/4F(t\) = D_r(t\1/2 ex) Nf ~iex)
t\r/2 k~O t\k

(3.28)

To complete the proof, an estimate of E2N+2 must be made. From (3.17),
we have

(3.29)

for 0 ::;;; U ::;;; R. With (3.18)

(3.30)

for all u ;:;:: 0, whether u ::;;; R or u ;:;:: R. Since ex ~ 0, it follows from (3.24)
that

I E2N+2 I ::;;; K4 j'lC ur+2N+2e-(A/2-Ksl,,· du
o

= 0(t\-(rHN+3)/2). (3.31).
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Furthermore, since both D_r(z) and D'_Az) have no nonnegative real zeros, as
long as ,\lj2ex is bounded, say, ,\lj2ex ~ A, there exist positive numbers M1
and M 2 , independent of,\ and ex, such that

for sufficiently large '\. For ,\lj2ex ~ A, we have again from (3.24)

I E2N+2 I ~ K4 f' ur+2N+2e-~O:u du
o

= O«'\ex)-r-2N-3),

Hence (3.32) holds also when ,\lj2ex ~ A, since

as ,\ -- 00.

(3.33)

(3.34)

as z -- +00 (see [8, p. 347]).
Using (3.28) and (3.32) it gives

_~o:2j4F('\) = D_r(,\1/2 ex) [~ ~k(CX) + 0(_1_)]
e ,\r /2 f,..;,\k ,\N+!

k=O

D~-r<,\1/2CX) [~71k(CX) 0 ( 1 )]
+ ,\<r+l)j2 k-:O~ + ,\N+! '

which is the required result.

4. AN EXAMPLE

For each real number x and each positive integer n, set

n", = ~ (nxY + (nx)n S ( )e f,..;, ,n X •
n~O r. n.

In 1913, Ramanujan [5] asserted that, as n -- 00,

(3.35)

(4.1)

Sn(l) = (n!j2)(ejn)2 - i + (4j135n) + 0 (ljn2). (4.2)

Proofs of this result were given independently in 1928 by Szego [6] and
Watson [7]. In 1932, Copson [3] investigated the behaviour of Sn(-1), and
showed that, as n -- 00,

Sn(-I) .-..- -! + (lj8n) + (lj32n2) - (ljI28n3) - (13j256n4) + .... (4.3)



84 WONG

In a recent paper, Buckholtz [2] proved that, for k ;? I

k-l I I
Sn(x) = L U.(x) r + 0 (-k),

.-0 n n

uniformly for x E (- 00, I - S]. The coefficients U.(x) are of the form

(4.4)

Uo(x) = xj(l - x), U.(x) = (-1)·[Q.(x)j(l - X)2'+1], (4.5)

where Q.(x) is a polynomial in x of degree r. Since U.(x) has a pole of order
(2r + 1), the expansion (4.4) is not valid for x near 1. It is, therefore, natural
to ask whether there exists an asymptotic expansion for SnCx) , as n -+ 00,

which is uniformly valid for x restricted to an interval, say, S :(: x :(: 1,
where S is some fixed positive number.

To answer this question affirmatively, we write

n (nx)' 1 In",
en", = L --I- + , (nx - on et dt.

r=O r. n. 0

Comparing (4.1) with (4.6), we have

Now make the substitution (nx - t) = nx(l - 7) and write

(4.6)

(4.7)

Sn(x) = (nx) r1

exp{-n[-xt - 10g(1 - tm dt. (4.8)
• 0

The last integral is clearly of the form (Ll), with b = 1, r = 1, q(t) = 1,
pet) = [-xt - 10g(1 - t)], ,\ = n and ex = (l - x)jx.

Following the procedures outlined in Section 2, we let

with

-xt - 10g(1 - t) = (u2j2) + au,

a2 = 2{(x - 1) - log x}.

(4.9)

(4.10)

Using ~(,B) as a generic symbol for a power series in ,B such that ~(O) = 0,
we may express a = a(x) in the form

a = (1 - x)[1 + ~(l - x)],

an analytic function of x near x = 1.

(4.11)
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Changing to the variable u, we obtain

I'"' dt
Sn(X) = (nx) 0 du e-n[u

2
/2+au] du,

where dt/du can be expanded as a convergent power series

with the coefficients given by

From (4.9) we have

[-x + (1/(1 - t»](dt/du) = u + a,

and hence

85

(4.12)

(4.13)

(4.14)

(4.15)

1 (dt )2 ( 1) d2t
(1 - t)2 du + -x + T="t du2 = 1,

2 ( dt )3 3 dt d2t ( 1) d3r
(1 - t)2 du + (l - t)2 du' du2 + -x + T=t du3 = 0

(4.16)

and so on. These equations give

aoex) = a/(1 - x), aleX) = [1/(1 - x)] - [a2/(1 - X)3],
(4.17)

alx) = -[a3/(1 - X)4] - [3a/2(1 - X)3] + [3a3/2(1 - X)5],

and so on. Each coefficient is an analytic function of x near x = 1. Since
I dt/du I is bounded for large values of u, we have from the main theorem

(4.18)

as n ----+ 00, where the coefficients Sk(a) and ?]k(a) are analytic functions of a
near the origin. The dominant term of this expansion is

as n ----+ 00, (4.19)

with a2 = 2{(x - 1) - log x}.
As a check on the validity of (4.19), we first let x = 1. In this case we have

as n ----+ 00, (4.20)
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which is precisely the first approximation given by Watson. Next we let
x ~ 1 - 8 < 1. Then we have

Six) "-' x/(1 - x), as n --+ 00, (4.21)

which is the dominant term given by Buckholtz.
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